Journal of Organometallic Chemistry, 329 (1987) 43-50 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

THE PREPARATION OF A NEW SERIES OF BRIDGED TRINUCLEAR COMPLEXES BY REACTION OF η^5 -(C₅H₄Li) COMPOUNDS WITH ALKYLTRICHLOROSILANES

MICHAEL E. WRIGHT*

Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322-0300 (U.S.A.)

and VICTOR W. DAY

Department of Chemistry, University of Nebraska, Lincoln, NE 68588 (U.S.A.) (Received May 5th, 1986; in revised form November 21st, 1986)

Summary

Several new bridged trinuclear complexes of the general formula $RSi[\eta^5-C_5H_4M(CO)_nR^1]_3$, have been prepared in good yield from the reaction of the lithiated compounds $(\eta^5-C_5H_4Li)M(CO)_nR^1$ (M = Mn, W, Fe; R^1 = Me, Et, and benzyl) with various alkyl trichlorosilanes. The crystal and molecular structure of $MeSi[\eta^5-C_5H_4Fe(CO)_2C_2H_5]_3$ is presented. In addition, some limitations of the direct cyclopentadienyl ring metalation are discussed.

Introduction

In most cases bridged-cyclopentadienylmetal complexes are prepared by synthesizing the bridging ligand, followed by attachment of the appropriate number of metals [1]. In cases where the bridging ligand is unsymmetrical, selective complexation of one site has been achieved. This latter approach has been used quite successfully for the following ligands, $\text{Li}[(C_5H_4)CH_2CH_2PPh_2]$ [2], $\text{Li}[(C_5H_4)CH_2 CH_2AsPh_2]$ [2], $\text{Li}[(C_5H_4)CH_2CH_2CH_2(C_5H_5N)]$ [2], $\text{Li}[(C_5H_4)PPh_2]$ [3], $\text{Li}[(C_5 H_4)SiMe_2CH_2PPh_2]$ [4], and $\text{Tl}[(C_5H_4)PPh_2]$ [5].

Ullmann coupling reactions of η^5 -(C₅H₄I)M, where $M = \text{Mn}(\text{CO})_3$ [6], Co(η^4 -C₄Ph₄) [7], Fe(C₅H₅) [8], and Ru(C₅H₅) [9], have yielded bimetallic $\eta^5 : \eta^5$ -fulvalene complexes. In a related reaction, treatment of (η^5 -C₅H₄Br)Co(CO)₂ first with n-BuLi, then CoCl₂, and finally H₂O, gave the coupled product, ($\eta^5 : \eta^5$ -fulvalene)Co₂(CO)₄, in 28% yield [10]. The X-ray structure was reported for the dicobalt complex.

Bis(cyclopentadienyl) bridging ligands are useful because of their robust nature, producing bimetallic complexes which are stable under a variety of reaction condi-

tions [11]. As a consequence, dinuclear complexes containing a bridged-bis(cyclopentadienyl) ligand are attractive systems for studying mechanisms involving two metal reaction sites [1e,1f].

Recently, direct metalation of the η^5 -cyclopentadienyl ring in several transitionmetal (TM) complexes containing carbonyls has appeared in the literature [12]. By utilizing metalated η^5 -cyclopentadienyl-TM complexes we have prepared a new series of trinuclear compounds in which all three metals are linked by an alkylsilane. The crystal and molecular structure of CH₃Si[η^5 -C₅H₄Fe(CO)₂CH₂CH₃]₃ (1c) has been completed and is also reported.

Results and discussion

Synthesis and characterization

Reaction of η^5 -cyclopentadienyl complexes with s-BuLi for 20 min, at -78° C in THF, produces the corresponding η^5 -cyclopentadienyl-lithiated compounds, η^5 -(C₅H₄Li)MCCO)_nR¹, which can then be treated with a variety of alkyltrichlorosilanes to afford a new series of bridged trinuclear complexes (Scheme 1). The trinuclear compounds are obtained in good to excellent yield after purification by column chromatography.

In the synthesis of 1a-1c we find that use of n-BuLi results in the recovery of the starting cyclopentadienyl compound and low conversion to the trinuclear product. In contrast, both the tungsten and manganese systems are observed to lithiate cleanly with n-BuLi at -78 °C in 30 min. This difference in reactivity most likely arises from kinetic factors as there is little doubt n-BuLi is basic enough, in a thermodynamic sense [12g,12h], to deprotonate the iron systems.

The new trinuclear complexes have spectroscopic data consistent with the proposed structures. The infrared spectra in the carbonyl region are very similar to their

Produc	t R	м	Yield (%)	
1 a	-CH3	Fe(CO) ₂ Me	87	М
1 b		Fe(CO) ₂ Bn ^a	83	
1 c		Fe(CO) ₂ Et	78	1. s-BuLi -78°C ; THF
2		Mn(CO) ₃	93	2. RSiCl ₃
3a		W(CO) ₃ Me	90	
3b		W(CO) ₃ Bn	91	¥
4	-+ CH₂+₃ Cl	Fe(CO) ₂ Me	85	M
5	-+CH2+2	Fe(CO) ₂ Me	70	M Si W R
	m,p CH ₂ Cl			м м

^a Bn = CH₂Ph

SCHEME 1

parent analogues and their ¹H and ¹³C NMR spectra are in agreement with previously reported silyl-bridged bis(cyclopentadienyl) compounds [11a].

In the ¹H NMR spectra, all of the trinuclear complexes exhibit an AA'BB' pattern for the cyclopentadienyl ring resonances. These data indicate that rotation about the cyclopentadienyl-silicon bond is rapid on the NMR time scale at 25°C; otherwise, all four cyclopentadienyl ring protons would be visible as distinct signals. Even at -80°C, complex 2 showed no signs of line broading and retained the AA'BB' pattern.

Compounds 1-3 are crystalline solids except for 3b which has only been obtainable as a yellow oil. This is quite surprising because of the high crystallinity associated with the η^5 -C₅H₅W(CO)₃CH₂Ph starting material. Attempts to crystallize 3b by slow diffusion at -25° C have been unsuccessful. On the other hand, 1b, is a microcrystalline solid that is virtually insoluble in chloroform, methylene chloride, tetrahydrofuran, acetonitrile, and benzene! The reasons for the dramatic change in the physical properties of 1b and 3b from their respective starting mononuclear complexes is not clear at this time.

The preparation of complexes 4 and 5 demonstrates reaction site selectivity as an important aspect. In both cases, the chloride on silicon is displaced by the lithiated complex with high selectivity over the alkyl or benzylic chloride. Hence, we have the ability to prepare trinuclear complexes with a useful functional group tethered to the complex.

Fig. 1. Perspective ORTEP drawing of $CH_3Si[\eta^5-C_5H_4Fe(CO)_2CH_2CH_3]_3$ (1c) viewed along the crystallographic C_3 axis which passes through Si and C_m . All non-hydrogen atoms are represented by thermal vibration ellipsoids drawn to encompass 50% of the electron density; hydrogen atoms are represented by arbitrarily small spheres which are in no way representative of their true thermal motion. Atoms labeled with single (') and double (") primes are related to those labeled without primes by the symmetry operations (z, x, y) and (y, z, x), respectively. Atom C(1) and all hydrogens except H_m are not labeled.

BOND LENGTHS (Å) AND BOND ANGLES (°) IN $CH_3Si[\eta^5-C_5H_4Fe(CO)_2CH_2CH_3]_3^{a,b}$					
Fe-C(1)	1.739(3)	C(1)-O(1)	1.134(5)		
Fe-C(2)	1.751(5)	C(2)-O(2)	1.141(6)		
Fe-C(3)	2.087(5)	C(3)-C(4)	1.502(7)		
Fe-Cp(1)	2.125(4)	Cp(1)-Cp(2)	1.406(5)		
Fe-Cp(2)	2.120(4)	Cp(1)-Cp(5)	1.435(6)		
Fe-Cp(3)	2.122(4)	Cp(2)-Cp(3)	1.423(6)		
Fe-Cp(4)	2.122(5)	Cp(3)-Cp(4)	1.387(6)		
Fe-Cp(5)	2.101(4)	Cp(4)-Cp(5)	1.402(6)		
Fe-Cg ^b	1.745(-)	Si-Cp(1)	1.860(7)		
		Si-C _m	1.868(4)		
Fe · · · Fe' ^c	6.118(1)	$C_m - H_m$	0.96(4)		
C(1)FeC(2)	96.1(2)	$C_m SiCp(1)$	111.7(1)		
C(1)FeC(3)	85.8(2)	Cp(1)SiCp(1') ^c	107.1(1)		
C(2)FeC(3)	89.2(2)				
		Cp(5)Cp(1)Si	128.4(3)		
CgFeC(1) ^b	128.8(-)	Cp(2)Cp(1)Si	126.5(3)		
CgFeC(2) ^b	124.2(-)	Cp(5)Cp(1)Cp(2)	105.2(3)		
CgFeC(3) ^b	120.4(-)	Cp(1)Cp(2)Cp(3)	109.7(4)		
-		Cp(2)Cp(3)Cp(4)	107.5(4)		
FeC(1)O(1)	178.0(4)	Cp(3)Cp(4)Cp(5)	108.4(4)		
FeC(2)O(2)	178.8(5)	Cp(4)Cp(5)Cp(1)	109.3(3)		
FeC(3)C(4)	118.0(4)	SiC _m H _m	111(2)		
		$H_m C_m H'_m c$	108(2)		

^a Numbers in parentheses are the estimated standard deviations in the last significant digit. Atoms are labeled in agreement with Fig. 1. ^b Cg, refers to the center-of-gravity for the five-membered ring of the cyclopentadienyl group. ^cAtoms labeled with a prime ($^{\prime}$) are related to those without by the symmetry operation z, x, y.

Crystal and molecular structure of MeSi $[\eta^5$ -C₅H₄Fe(CO)₂CH₂CH₃]₃ (1c)

To more fully characterize these new bridged trinuclear complexes we have completed a single crystal X-ray diffraction study on complex 1b. An ORTEP perspective drawing of 1c is displayed in Fig. 1 along with the labeling scheme employed. Complex 1c possesses a C_3 axis through the C_m -Si bond giving the structure a "propeller" like appearance. For each iron center, the bulky ethyl group is directed away from the center of the trinuclear complex, undoubtedly to avoid steric interactions with the silyl methyl moiety. The coordination of ligands about the iron centers is similar to mononuclear [13] and binuclear [11b] complexes previously characterized by structural studies. Table 1 gives a listing of bond angles and bond lengths for 1c.

Attempted metalations

Reaction of η^5 -C₅H₅Fe(CO)(PPh₃)CH₃ (6) with either one equiv of n-BuLi. t-BuLi, or n-BuLi/TMEDA for 1 h at -78° C, followed by a quench with excess methyl iodide, leads only to recovery of 6. Similar results were obtained when attempts were made to deprotonate $(\eta^5 - C_5 H_5)_2 Zr(CH_3)_2$. In a related system, η^5 -C₅H₅Re(NO)(PPh₃)CH₃ (7), Gladysz and co-workers [14] noted that for complete cyclopentadienyl metalation 2.1 equiv of n-BuLi/TMEDA were required. Unfortunately, in the preparation of the trinuclear complexes above, excess alkyl-

TABLE 1

Conclusion

Reaction of lithiated cyclopentadienyl complexes with alkyl trichlorosilanes produces, in good yield, a new class of bridged trinuclear complexes. Both early and late transition metals as well as first and third row transition metals work well in the synthetic strategy. Current work is focused on preparing mixed-metal systems by exploiting the selective substitution of a silicon chloride over an alkyl halide [15].

Experimental

General

All reactions and subsequent manipulations were carried out using standard Schlenk techniques under a purified nitrogen atmosphere. Solvents were routinely dried and degassed by standard procedures and stored under nitrogen [16].

Spectroscopic measurements utilized the following instrumentation: ¹H and ¹³C NMR, Varian XL300 (300 MHz); IR, Perkin–Elmer 599. NMR chemical shifts are reported in δ vs. Me₄Si assigning the CDCl₃ resonance in ¹³C spectra to be 77.00 ppm.

The following compounds were prepared by literature methods: η^5 -C₅H₅Fe-(CO)₂CH₃, η^5 -C₅H₅Fe(CO)₂CH₂CH₃, η^5 -C₅H₅Fe(CO)₂CH₂Ph [17], η^5 -C₅H₅W-(CO)₃CH₃, η^5 -C₅H₅W(CO)₃CH₂Ph [18]. The W(CO)₆, $[\eta^5$ -C₅H₅Fe(CO)₂]₂, and η^5 -C₅H₅Mn(CO)₃ were purchased from Strem Chemical Company and used as received. The alkyl trichlorosilanes were purchased from Petrarch Chemical Company and stored at -25° C over CaH₂.

General method for the preparation of $RSi[\eta^5-C_5H_5M(CO)_nR^1]_3$

A tetrahydrofuran (100 ml) solution containing 10 mmol of the cyclopentadienyl monomer is treated with 10 mmol of s-BuLi (1.3 M in cyclohexane) at -78 °C and stirred for 20 min. The methyltrichlorosilane (3.3 mmol) is added dropwise via a syringe at -78 °C. The mixture is allowed to warm to 20 °C and the solvent is removed in vacuo. The crude residue is column chromatographed on alumina III using gradient elution. Initially hexanes are utilized and the solvent polarity increased with methylene chloride (1/1, v/v). Recovered monomer is eluted first, followed by a yellow band which corresponds to the trinuclear complex.

- Preparation of MeSi[η^{5} -(C₅H₄)Fe(CO)₂CH₂Ph]₃ (1b)

Complex 1b is prepared in a similar manner as above except that the crude residue is washed on a glass-frit several times with water and finally with chloro-form to yield pure 1b as a yellow powder. Spectroscopic data for 1b ¹H NMR (CDCl₃) 7.12-6.93 (m, 15H), 4.81 (dd, J 2 Hz, 6H), 4.70 (dd, J 2 Hz, 6H), 2.57 (s, 6H), 0.81 (s, 3H). Anal. Found: C, 61.43; H, 4.45. $C_{43}H_{36}Fe_3O_6Si$ calc: C, 61.16; H, 4.30%.

^{*} As pointed out by a referee, varying the experimental procedures could possibly permit the use of excess lithiating reagent.

Spectroscopic and analytical data for complexes 1-5

 $CH_3Si[\eta^5-C_5H_4Fe(CO)_2CH_3]_3$ (1a). ¹H NMR (CDCl₃) 4.88 (br s, 6H), 4.84 (br s, 6H), 0.80 (s, 3H, SiCH₃), 0.06 (s, 9H, FeCH₃); ¹³C NMR (CDCl₃) 216.9 (CO), 93.4, 88.7, 83.1 (C₅H₄), -3.8 (SiCH₃), -23.0 (FeCH₃); IR (CH₂Cl₂) 2010 and 1953 cm⁻¹. Anal. Found: C, 48.54; H, 3.98. C₂₅H₂₄Fe₃O₆Si calc: C, 48.74; H, 3.93%.

 $CH_3Si[\eta^5-C_5H_4Fe(CO)_2CH_2CH_3]_3$ (1c). ¹H NMR (CDCl₃) 4.87 (dd, J 2 Hz, 6H), 4.82 (dd, J 2 Hz, 6H), 1.50 (t, J 7 Hz, 6H), 1.19 (t, J 7, 9 Hz) 0.81 (s, 3H); ¹³C NMR (CDCl₃) 217.4 (CO), 92.8, 89.9, 83.5 (C₅H₄), 22.0 (FeCH₂CH₃), -2.3 (FeCH₂CH₃), -3.7 (SiCH₃). Anal. Found: C, 51.04; H, 4.62. C₂₈H₃₀Fe₃O₆Si calc: C, 51.10; H, 4.59%.

 $CH_3Si[\eta^5-C_5H_4Mn(CO)_3]_3$ (2). ¹H NMR (CDCl₃) 4.31 (dd, J 2 Hz, 6H), 4.11 (dd, J 2 Hz, 6H), 0.59 (s, 3H); ¹³C NMR (CDCl₃) 224.3 (CO), 92.0, 85.0, 82.3 (C₅H₄), -4.2 (SiCH₃); IR (CH₂Cl₂) 2023 and 1943 cm⁻¹. Anal. Found: C, 45.88; H, 2.36. C₂₅H₁₅Mn₃O₉Si calc: C, 46.03; H, 2.32%.

 $CH_3Si[\eta^5-C_5H_4W(CO)_3CH_3]_3$ (3a). ¹H NMR (CDCl₃) 5.63 (dd, J 2 Hz, 6H), 5.22 (dd, J 2 Hz, 6H), 0.63 (s, 3H), 0.29 (s, 9H); ¹³C NMR (CDCl₃) 215.1 (CO), 97.1, 96.3 (C₅H₄), 94.5 (SiC₅H₄), -4.3 (SiCH₃), -34.1 (WCH₃); IR (CH₂Cl₂) 2013 and 1923 cm⁻¹. Anal. Found: C, 30.97; H, 2.26. C₂₈H₂₄O₉SiW₃ calc: C, 31.02; H, 2.23%.

 $CH_3Si[\eta^5-C_5H_4W(CO)_3CH_2Ph]_3$ (**3b**). ¹H NMR (CDCl₃) 7.1 (br s, 15H), 5.51 (dd, J 2 Hz, 6H), 4.91 (dd, J 2 Hz, 6H), 2.88 (s, 6H), 0.50 (s, 3H); ¹³C NMR (CDCl₃) 217.1 (CO), 150.9, 128.0, 127.3, 124.1 (phenyl), 98.8, 97.7, 96.6 (C₅H₄), -4.2 (SiCH₃), -5.8 (WCH₂Ph). Anal. Found: C, 41.92; H, 2.90. $C_{46}H_{36}O_9SiW_3$ calc: C, 42.10; H, 2.77%.

 $ClCH_2CH_2CH_2Si[\eta^5-C_5H_4Fe(CO)_2CH_3]_3$ (4). ¹H NMR (CDCl₃) 4.89 (s, 12H), 3.64 (t, J 6 Hz, 2H), 2.34–2.01 (m, 2H), 1.49–1.26 (m, 2H), 0.14 (s, 9H); ¹³C NMR

TABLE 2

CRYSTALLOGRAPHIC PARAMETERS FOR COMPOUND 1c

Space group	Rhombohedral (R_{3c})	
a, b, c (Å)	11.609(2)	
α, β, γ (°)	101.73(2)	
$V(Å^3)$	1450.2(5)	
$d_{\rm calc}$ (g/cm ³)	1.51	
Z	2	
F _w	658.2	
Cryst. shape	irregular	
Cryst. size (mm)	minimum 0.60, maximum 0.92	
$\mu(\text{Mo-}K_a) (\text{mm}^{-1})$	1.60	
Scan method	ω	
Range, 2θ (°)	3.0-60.4	
No. of unique data	1446	
No. of data with $ F_{\alpha}^2 > 3\sigma F_{\alpha}^2 $	1090	
R ₁	0.027	
R_2	0.026	
No. of variables	122	
Goodness of fit	1.38	

TABLE 3

FRACTIONAL ATOMIC COORDINATES (×10⁴) AND EQUIVALENT ISOTROPIC THERMAL PARAMETERS FOR NON-HYDROGEN ATOMS IN CRYSTALLINE CH₃Si[(η^{5} -C₅H₄) Fe(CO)₂(C₂H₅)]₃ ^{*a*}

Atom ^b	x	у	Z	B (Å ²) ^c
Fe	- 2157(1)	1377(1)	1084(1)	3.3
Si ^d	$0(-)^{d}$	$0(-)^{d}$	$0(-)^{d}$	3.4
O(1)	- 3887(4)	-753(3)	- 542(4)	7.9
O(2)	-2131(4)	574(4)	3288(3)	8.0
C(1)	- 3192(4)	75(4)	107(4)	4.8
C(2)	-2152(4)	895(4)	2419(4)	4.7
C(3)	- 3675(4)	2033(4)	1257(4)	5.0
C(4)	- 4672(4)	1262(4)	1625(5)	6.4
Cp(1)	- 540(3)	1386(2)	492(3)	3.5
Cp(2)	- 250(4)	2135(3)	1680(4)	4.0
Cp(3)	- 853(4)	3086(4)	1691(4)	4.8
Cp(4)	- 1499(4)	2949(3)	506(4)	4.6
Cp(5)	-1328(3)	1917(3)	-237(3)	4.0
C _m	-1201(4)	-1201(4)	-1201(4)	4.5

^a The numbers in parentheses are the estimated standard deviations in the last significant digit. ^b Atoms are labeled in agreement with Fig. 1. ^c This is one-third of the trace of the orthogonalized B_{ij} tensor. ^d This atom was used to fix the origin of the unit cell; its coordinates are therefore listed without estimated standard deviations.

(CDCl₃) 216.0 (CO), 92.7, 89.6, 81.9 (C₅H₄), 47.4, 27.4, 11.7 (CH₂'s), -22.5 (FeCH₃); IR (CH₂Cl₂) 2010 and 1953 cm⁻¹. Anal. Found: C, 47.84; H, 4.04. C₂₇H₂₇ClFe₃O₆Si calc: C, 47.79; H, 4.01%.

[*m*- and p-(CH_2Cl) C_6H_4]-(CH_2)₂-Si[η^5 - $C_5H_4Fe(CO)_2CH_3$] ₃ (5). ¹H NMR (CDCl₃) 7.35–7.10 (m, 4H), 4.92 (brs, 12H), 4.58, 4.56 (s and shoulder, 2H), 3.16–2.92 (m, 2H), 1.73–1.52 (m, 2H), 0.16 (s, 9H); ¹³C NMR (CDCl₃); 216.7 (CO), 144.2, 137.6, 128.9, 127.9, 127.7, 126.3 (phenyl, major isomer), 92.7, 89.7, 82.1 (C_5H_5), 46.4, 29.9, 16.4 (CH₂'s), –22.1 (FeCH₃). Anal. Found: C, 52.47; H, 4.18. $C_{33}H_{31}$ ClFe₃O₆Si calc: C, 52.38; H, 4.13%.

Crystal and molecular structure determination of $Me[\eta^5-C_5H_4Fe(CO)_2CH_2CH_3]$, (1c)

Single crystals of 1c were grown from a saturated CH_2Cl_2 solution at $-25^{\circ}C$. A summary of the X-ray study is presented in Table 2 and a listing of final atomic positions for non-hydrogen atoms can be found in Table 3. The anisotropic thermal parameters for non-hydrogen atoms, atomic coordinates for hydrogen atoms, and complete details of the structure determination can be found in Tables 4 and 5, and the crystal structure analysis report, respectively, located in the supplemental material.

Acknowledgement

Michael E. Wright wishes to thank Utah State University for generously funding this work.

References

- (η⁵: η⁵-fulvalene) M₂(CO)_n: (a) K.P.C. Vollhardt and T.W. Weidman, J. Am. Chem. Soc., 105 (1983) 1676; (b) Organometallics, 3 (1984) 82 and references therein; (c) J.C. Smart and C.J. Curtis, Inorg. Chem., 16 (1977) 1788. Me₂Si[η⁵-C₅H₄Fe(CO)₂]₂: (d) P.A. Wegner, V.A. Unsi, R.P. Kiester, S. Dabestani, and V.W. Day, J. Am. Chem. Soc., 99 (1977) 4846; (e) G.O. Nelson and M.E. Wright, J. Organomet. Chem., 239 (1982) 353. CH₂[η⁵-C₅H₄Co(CO)₂]₂: (f) H.E. Bryndza and R.G. Bergman, J. Am. Chem. Soc., 101 (1979) 4766; (g) U.T. Mueller-Westerhoff, A. Nazzal, and M. Tanner, J. Organomet. Chem., 236 (1982) C41.
- 2 T. Kauffmann, J. Ennen, H. Lhotak, A. Rensing, F. Steinseifer, and A. Woltermann, Angew. Chem. Int. Ed., Engl., 19 (1980) 328.
- 3 A.W. Rudie, D.W. Lichtenberg, M.L. Katcher, and A. Davison, Inorg. Chem., 17 (1978) 2859.
- 4 N.E. Schore, J. Am. Chem. Soc., 101 (1979) 7410.
- 5 M.D. Rausch, B.H. Edwards, R.D. Rogers, and J.L. Atwood, J. Am. Chem. Soc., 105 (1983) 3882.
- 6 M.D. Rausch, R.F. Kovar, and C.S. Kraihanzel, J. Am. Chem. Soc., 91 (1969) 1259; R.F. Kovar and M.D. Rausch, J. Org. Chem., 38 (1973) 1918.
- 7 M.D. Rausch and R.A. Genetti, J. Org. Chem., 35 (1970) 3888.
- 8 M.D. Rausch, J. Org. Chem., 26 (1961) 1802.
- 9 D.O. Cowan, Abstracts, VIth International Conference on Organometallic Chemistry, Amherst, MA, 1973.
- 10 D.W. Macomber, W.P. Hart, and M.D. Rausch, Adv. Organomet. Chem., 21 (1982) 1.
- Using Me₂Si[η⁵-C₅H₄Fe(CO)₂]₂ as an illustration: (a) G.O. Nelson and M.E. Wright, Organometallics, 1 (1982) 565; (b) V.W. Day, M.R. Thompson, G.O. Nelson, and M.E. Wright, ibid., 2 (1983) 494; (c) W.W. McConnell, G.O. Nelson, and M.E. Wright, Inorg. Chem., 22 (1983) 1689; (d) M.E. Wright, T.M. Mezza, N.R. Armstrong, V.W. Day, and M.R. Thompson, Organometallics, 2 (1983) 1711.
- 12 (a) L.S. Liebeskind and M.E. Welker, Organometallics, 2 (1983) 194; (b) S.R. Berryhill, G.L. Clevenger, and F.Y. Burdurlu, Organometallics, 4 (1985) 1509; (c) G. Thum, W. Ries, D. Greissinger and W. Malisch, J. Organomet. Chem., 252 (1983) C67; (d) S.R. Berryhill and B. Sharenow, ibid., 221 (1981) 143; (e) H. Werner and W. Hofmann, Angew. Chem., Int. Ed. Engl., 17 (1978) 464; (f) W.K. Dean and W.A.G. Graham, Inorg. Chem., 16 (1977) 1061; (g) T. Orlova, V.N. Setkina, V.F. Sizoi, and D.N. Kursanov, J. Organomet. Chem., 252 (1983) 201; (h) T.Yu. Orlova, V.N. Setkina, and D.N. Kursanov, ibid., 267 (1984) 309; (i) G.L. Crocco and J.A. Gladysz J. Chem. Soc., Chem. Commun., (1985) 283.
- 13 F.A. Cotton, B.A. Frenz, and A.J. White, J. Organomet. Chem., 60 (1973) 147.
- 14 P.C. Head, A.T. Patton, and J.A. Gladysz J. Am. Chem. Soc., 108 (1986) 1185.
- 15 Some preliminary results have been reported: M.E. Wright, New York ACS Meeting, Inorg. Abstract #191, April 1986.
- 16 A.J. Gordon and R.A. Ford, The Chemists Companion, Wiley, New York, 1972.
- 17 A. Davison, J.A. McCleverty, and G. Wilkinson, J. Chem. Soc., (1963) 1133.
- 18 T.S. Piper and G. Wilkinson, J. Inorg. Nucl. Chem., 3 (1956) 104; R.B. King, Organometallic Synthesis, Academic Press, New York, 1965, Vol. 1, p. 147.